
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Hierarchical classification of diatom images using ensembles of predictive
clustering trees

Ivica Dimitrovski a,⁎, Dragi Kocev b, Suzana Loskovska a, Sašo Džeroski b

a Department of Computer Science and Computer Engineering, Faculty of Electrical Engineering and Information Technologies, Rugjer Boshkovik bb, 1000 Skopje, Republic of Macedonia
b Department of Knowledge Technologies, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

a b s t r a c ta r t i c l e i n f o

Article history:
Received 5 July 2011
Received in revised form 4 September 2011
Accepted 5 September 2011
Available online 10 September 2011

Keywords:
Diatoms
Automatic image annotation
Hierarchical classification
Predictive clustering trees
Feature extraction from images

This paper presents a hierarchical multi-label classification (HMC) system for diatom image classification.
HMC is a variant of classification where an instance may belong to multiple classes at the same time and
these classes/labels are organized in a hierarchy. Our approach to HMC exploits the classification hierarchy
by building a single predictive clustering tree (PCT) that can simultaneously predict all different levels in
the hierarchy of taxonomic ranks: genus, species, variety, and form. Hence, PCTs are very efficient: a single
classifier is valid for the hierarchical classification scheme as a whole. To improve the predictive performance
of the PCTs, we construct ensembles of PCTs. We evaluate our system on the ADIAC database of diatom im-
ages. We apply several feature extraction techniques that can be used in the context of diatom images. More-
over, we investigate whether the combination of these techniques increases predictive performance. The
results show that ensembles of PCTs have better predictive performance and are more efficient than SVMs.
Furthermore, the proposed system outperforms the most widely used approaches for image annotation. Fi-
nally, we demonstrate how the system can be used by taxonomists to annotate new diatom images.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Diatoms are a large and ecologically important group of unicellu-
lar or colonial organisms (algae). They are characterized by their
highly patterned cell wall composed mainly of hydrated amorphous
silica. The cell wall can be divided into two halves. Each half of the
cell wall consists of a valve and a number of girdle bands. One half
is slightly larger than the other and overlaps it. Together, the halves
make a cylinder, with the two valves at the ends. The cross section
of the cylinder, and hence the outline of the valve, varies greatly in
shape between species and genera. This, together with the pattern
of pores and other markings on the valve, provides the information
needed for species classification. Fig. 1 depicts three example images
of diatoms.

In the variety of uses of diatoms, such as water quality monitoring,
paleoecology and forensics, microscope slides must be first scanned
for diatoms: if diatoms are present, they need to be classified. Most
classifications are done using classification keys and/or comparing
specimens using slides, photographs or drawings of diatoms in
books and atlases (Stoermer and Smol, 2004). This is not a trivial
task, taking into consideration that taxonomists estimate that there
may be 200,000 different diatom species, half of them still undiscov-
ered, and many of these extremely hard to distinguish on the basis of

morphology (du Buf and Bayer, 2002). Furthermore, this is very te-
dious and repetitive work, thus any degree of automation can greatly
help.

Having this in mind, we propose a system for automatic diatom
classification. This system consists of the two standard parts of
image annotation systems: image processing (feature extraction
from images) and image classification. The image processing part
converts an image to a set of numerical features that are extracted di-
rectly from the image pixels. The second part, image classification, la-
bels and groups the images. The labels can be organized in a hierarchy
and an image can be labeled with more than one label (can belong to
more than one group).

For the image processing part, we have implemented two feature
extraction techniques that are most commonly used in this context.
The first technique produces descriptors (called Fourier descriptors)
that contain information concerning the properties of the valve out-
line. The descriptors from the second technique, called Scale Invariant
Feature Transform-SIFT histograms, contain information about the or-
namentation of the valve face. We believe that the diatom images can
be appropriately described with the combination of these two
techniques.

Considering the image classification part, we will use the recently
proposed method of building ensembles of PCTs, in particular, bag-
ging and random forests of PCTs (Kocev et al.,2007; Kocev, 2011).
We directly compare the predictive performance and the efficiency
of the ensembles of PCTs to the one of SVMs trained with Gaussian
kernels — the most widely used classifiers used in image annotation.
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Moreover, we contrast the predictive performance of the proposed
approach to the best reported results (du Buf and Bayer, 2002) on
the used database of diatom images (ADIAC, 2011).

The goal of the complete system is to assist a taxonomist in iden-
tifying a wide range of different diatoms. To this end, we develop a
web-based interface to the proposed system than can help taxono-
mists with the identification of diatom taxa in images. The user (i.e.,
taxonomist) loads an image to the system by using the interface.
After that, the system recommends an annotation for the image, ac-
companied with a probability value for the prediction. The taxono-
mist can then select the proposed annotation and browse through
the images from the same species to further check the validity of
the annotation.

The remainder of the paper is organized as follows. In Section 2,
we present the related work. Section 3 describes the system for anno-
tation of diatom images, namely, image segmentation, techniques we
use for feature extraction from images, and predictive clustering trees
and their use for HMC. In Section 4, we explain the experimental
setup. The obtained results and a discussion thereof are given in Sec-
tion 5. Section 6 concludes the paper and points out some directions
for further work.

2. Background and related work

The process of automatic diatom classification consists of three
phases (du Buf and Bayer, 2002): image segmentation, feature extrac-
tion and image classification. The goal of image segmentation is to lo-
cate and obtain the contour of the diatom. Then, using these
segmented images and extracted contours, the feature extraction al-
gorithms generate image descriptors. At the end, machine learning al-
gorithms are used to train a classifier that will perform the
classification for previously unseen diatom images (e.g., provide the
taxonomic rank). Here, we shortly describe each phase and the algo-
rithms which are usually used in each of them.

2.1. Image segmentation

An ideal diatom image depicts only a single diatom shell. Howev-
er, in reality, diatoms may lay on top of each other or very close to
each other, the image may not be in proper focus, dust specks and
background texture may be visible in some images etc. Fig. 3 (first
row) shows diatom images that contain some of the aforementioned
anomalies. Because of this, one needs to perform image segmentation
before extracting features from the images.

The problem of image segmentation, i.e., contour extraction, of
gray-scale diatom images can be solved mainly by applying four
methods: threshold-based, boundary-based, region-based and hybrid
methods (Jalba et al., 2004). Threshold methods assume that all pixels
with gray-level values within a certain range belong to one class. They
do not use any spatial information of the image, are sensitive to noise,
and do not cope well with blurred edges. The boundary-based
methods are local filtering techniques, such as edge detectors or active
contour methods. Edge detectors usually cannot ensure continuous

edge-detection and an edge-linking step must be used to produce
closed contours. In contrast, active contour methods automatically
produce closed contours and usually provide better edge localization,
but are sensitive to noise and require an initialization step that is hard
to automate. Region-based methods assume that neighboring pixels
within the same region have similar values. Their main advantage is
that they use and adapt the statistics inside the region, but they gen-
erate small holes and irregular boundaries. Hybrid techniques combine
both boundary and region criteria. All in all, there is a variety of ap-
proaches that one can choose for the problem at hand. In our system,
we are using marker-controlled watershed segmentation which has
already been successfully applied for diatom image segmentation
(Jalba et al., 2004).

2.2. Feature extraction

Once the segmentation and contour extraction are completed, dif-
ferent feature extraction techniques can be employed on the diatom
images (Westenberg and Roerdink, 2002). The diatoms can be pri-
marily distinguished by evaluating properties of the valve's outline.
The contour features measure the symmetry, global and local shape
characteristics, as well as geometric properties, such as length and
width of the diatoms (Ciobanu and du Buf, 2002; Fischer and Bunke,
2002; Loke and du Buf, 2002).

An important characteristic of diatoms is also the ornamentation of
the valve face, which is a specific type of texture (Wilkinson et al.,
2002). There are several known visual descriptors able to measure
these texture properties: features derived from gray level co-occurrence
matrices, Gabor wavelets (Santos and du Buf, 2002), scale invariant fea-
ture transform (SIFT) (Lowe, 2004) and local binary patterns (LBP)
(Ojala et al., 2002). To summarize, these features capture several aspects
of an image. Depending on the application, one can choose to use some
specific feature extraction technique or to combine several of them into
a single, more complex set of features.

2.3. Image classification

The last phase of an automatic classification system is classifica-
tion. In this phase, a machine learning algorithm is first employed to
construct a classifier using the features extracted in the previous
two stages and the annotations/labels of the images (taxonomic
ranks). Then, the obtained classifier maps the images of unidentified
specimens to annotations from the set observed during training, i.e.,
provides annotations for previously unseen images. In the context
of diatom image classification, the most typically used classifiers are
neural networks, naïve Bayes, support vector machines (SVMs) and
decision trees.

Santos and Du Buf (Santos and du Buf, 2002) use a fully-connected
neural network classifier with one hidden layer. The number of input
units equals the number of features. The hidden layer has an equal
number of units as the input layer, and the output layer has as
many units as there are classes. The neural network is trained until
the error rate on a validation set reaches a local minimum.

Fig. 1. Example images of diatoms. From left to right: Diatoma mesodon, Fallacia sp.5 and Tabellaria flocculosa.
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The naïve Bayes classifier estimates the probability density func-
tion of the features for each class (Zhang, 2004). It classifies an un-
seen image by first computing the conditional probabilities for each
class, given the image's feature vector.Then, it assigns the image to
the class with the highest probability.

The SVMs are most widely used classifiers for image annotation in
general, current state-of-the-art results in image annotation are
obtained using per-label-trained SVM classifiers (Mensink et al.,
2010). There are also several studies concerning automated taxonom-
ic classification that use SVMs as classifiers (MacLeod, 2008; Morris
et al., 2001; Sosik and Olson, 2007).

Most state-of-the-art results in automatic diatom classification
are achieved using decision trees and bagging thereof as classifiers
(Fischer and Bunke, 2002). The decision trees do not make prior as-
sumptions for the probability distribution of the dependent and the
independent variables, they can use discrete and/or continuous indepen-
dent variables, can handle missing values and the learning process is not
influenced by redundant variables and noise. Furthermore, they are not
computationally expensive and are easily interpretable. When the trees
are combined into an ensemble, then very high predictive performance
can be achieved (Breiman, 1996).

The aforementioned classification approaches however do not use
the semantic knowledge about the inter-class relationships among
the classes. The classes can be organized into different levels in the hi-
erarchy of taxonomic ranks: genus, species, variety, and form. To this
end, we propose to use the predictive clustering trees (PCTs) as clas-
sifiers. PCTs can exploit the hierarchical taxonomy and simultaneous-
ly predict all taxonomic ranks (Vens et al., 2008). This approach yields
a very efficient classifier that offers high predictive performance.

3. System for automatic diatom classification

The architecture of the proposed system for annotation of diatom
images is outlined in Fig. 2. As mentioned earlier, the system is com-
posed of image segmentation part, feature extraction part and anno-
tation part. Fig. 2 further shows the specific methods used as
components of the proposed system. In this section, we further de-
scribe each part in more detail.

3.1. Image segmentation

The first step in automatic annotation of diatom images is apply-
ing image segmentation. The image segmentation concerns location
of relevant objects, i.e., its goal is to locate the diatoms in the input
microscopic images. The complete procedure for image segmentation
is shown in Fig. 3. The procedure starts by applying watershed trans-
form in order to separate the touching objects. The watershed trans-
form finds catchment basins and watershed ridge lines in an image by

treating it as a surface where light pixels are high and dark pixels are
low (third row in Fig. 3).

Segmentation using the watershed transform works better if the
foreground objects and the background locations are automatically
identified at the beginning (second row in Fig. 3). This type of water-
shed segmentation is called marker-controlled watershed segmenta-
tion. To find the foreground markers, which must be connected
blobs of pixels inside each of the foreground objects, a variety of pro-
cedures can be applied. In our system, we are using a morphological
technique called opening-by-reconstruction to clean up the image.
Opening-by-reconstruction is an erosion followed by a morphological
reconstruction. This operation will create flat maxima inside each ob-
ject that can be easily located and selected as foreground markers.
This procedure tends to leave some isolated pixels that must be re-
moved and not considered as marker regions. In our system, the
size of the structuring element for the erosion was set to 3×3, and
the threshold on area, for small region removal, was set to 200 pixels.
The background markers were obtained with a thresholding opera-
tion on the resulting image.

The contours produced by the marker-controlled watershed seg-
mentation method (fourth row in Fig. 3) are traced using a standard
contour following algorithm. This procedure traverses the whole
image pixel-by-pixel starting at the top-left corner and proceeding
from left-to-right and top-to-bottom. It searches for a pixel from the
3×3 neighborhood with the same value as the current pixel. The
search is continued until the starting point of the contour is reached
again and it labels the encountered pixels as ‘visited’ (fifth row in
Fig. 3).

All extracted contours are then filled at gray-level zero by a flood-
fill algorithm, and all obtained regions are drawn in the same image. In
a further post-processing step, an opening with a structuring element
of size 3×3 is used to prune the thin structures, which may still be
connected to diatom regions, due to debris or fragments of other dia-
toms. In this way, the union of all diatom and inner-diatom regions is
created and all diatom contours can be found by tracing only one con-
tour per region. The regions obtained after flood-filling the traced
contours are shown in the sixth row in Fig. 3. Notice that the surviv-
ing inner-diatom regions, which were not removed by the marker se-
lection procedure, are now merged into one large diatom region. In
our system, contours which enclose regions of areas smaller than
4900 pixels are not considered as diatom regions and are rejected,
i.e. this procedure rejects the contours that have fewer pixels than
the minimum diatom size.

3.2. Feature extraction

We apply two feature extraction techniques on the regions identi-
fied by the image segmentation procedure. Given the specific problem
of annotating microscopic diatom images, we apply two techniques
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Fig. 2. Architecture of the proposed system for classification/identification/annotation of diatom images.
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that have been used in this context: Fourier descriptors and histo-
grams of local SIFT descriptors. The Fourier descriptors characterize
the shape of the diatom contour, while SIFT histograms describe the
texture of the diatom. In the following, we briefly describe these two
techniques.

3.2.1. Fourier descriptors
The Fourier descriptors view a closed curve (e.g., a diatom con-

tour) as a periodic function and represent it by a set of Fourier coeffi-
cients/descriptors. They are calculated by approximating the best-
fitting ellipse over the examined shape and are obtained through a

Fourier transform using the coordinates of the shape boundary. The
magnitudes of the obtained Fourier coefficients are normalized by
the magnitude of the first coefficient. The Fourier coefficients are in-
variant to translation, rotation and scaling.

The high frequency noise can be significantly reduced by limiting
the number of coefficients c (the effect of low pass filtering). At the
same time, this will preserve the main patterns in the contour. On
the other hand, this reduction can lead to the loss of spatial in-
formation in terms of fine detail. Following the recommendations
by Fischer and Bunke (Fischer and Bunke, 2002), we consider 30 co-
efficients as sufficient to distinguish between most shapes.

Fig. 3. Illustration of the diatom segmentation procedure. First row: example images, from left to right: Diatoma mesodon, Denticula tenuis and Navicula lanceolata. Second row: im-
ages with markers. Third row: images with watershed regions. Fourth row: images with watershed lines. Fifth row: images with contours after applying contour following. Sixth
row: regions obtained after flood-filling the contours. Seventh row: images with final diatom contours.
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3.2.2. SIFT histograms
An important property of the diatoms is the ornamentation of the

valve face, which is a specific type of texture. This means that descrip-
tors for local regions of an image can provide significant information
for distinguishing and discrimination of the images. To this end, we
use the Scale Invariant Feature Transform (SIFT), which is reasonably
invariant to changes in illumination, image noise, rotation, scaling,
and small changes in viewpoint (Lowe, 2004).

The SIFT method extracts and describes local key-points. The
number of descriptors obtained with SIFT is large because an image
may contain many key-points and each key-point is described by
128 numerical values. Using histograms of local features, the amount
of data is reduced by estimating the distribution of local feature
values for every image.

The creation of these histograms is a three step procedure. First,
key-points detected inside the diatom contour are extracted from
all database images using the default parameters proposed by
Lowe (2004). Then, the key-points are clustered into 200 clusters
using k-means. For each key-point, all information is discarded except
the identifier of the most similar cluster center. We then create for
each image a histogram of the occurring patch-cluster identifiers. To
be independent of the total number of key-points in an image, the
histogram bins are normalized to sum up to 1. This results in a 200 di-
mensional histogram for each image.

3.3. Ensembles of PCTs for HMC

The descriptors that were obtained using the procedures de-
scribed above, combined together with the annotations of the images,
are used to train a classifier. The annotations of the images can be un-
structured or structured. In the first case, the annotations are a simple
vector of binary variables meaning that an image is or is not labeled
with a given label. In the second case, the labels can be organized in
some kind of taxonomy (e.g., hierarchy or directed acyclic graph).
The problem of annotation of microscopic diatom images belongs to
the second case, since the diatoms can be described by their taxo-
nomic rank. So, we use classifiers that are able to exploit the informa-
tion about the structure of the annotations, namely, we use predictive
clustering trees (PCTs) (Blockeel et al., 1998) for hierarchical multi-
label classification (HMC) (Vens et al., 2008). Moreover, to increase
their predictive performance, we use ensemble methods, such as bag-
ging and random forests. In the following, we first define the task of
hierarchical multi-label classification. We then present the ap-
proaches to learning PCTs for HMC and ensembles of PCTs for HMC.

3.3.1. The task of HMC
Hierarchical multi-label classification is a variant of classification

where (1) a single example may belong to multiple classes at the
same time and (2) the possible classes are organized in a hierarchy.
An example that belongs to some class c automatically belongs to all

super-classes of c: This is called the hierarchical constraint. Problems
of this kind can be found in many domains including text classifica-
tion, functional genomics, and object/scene classification. For a more
detailed overview of the possible application areas we refer the read-
er to Silla and Freitas (Silla and Freitas, 2011).

In diatom classification, the diatom species are separated/classified
using a logical system of categories with a hierarchical structure (tax-
onomic rank). Fig. 4 depicts such a systemwhere the top level catego-
ry is genus. Within each genus, there are many species that are further
divided into subspecies, varieties, forms, morphotypes, etc.

The data, as presented in the table in the left-hand side of Fig. 4,
constitute a training data set for HMC. Each image is represented
with: (1) a set of descriptors (in this example, the descriptors are
the first five Fourier coefficients) and (2) a set of classes/annotations.
A single image can belong to multiple classes at different levels of the
predefined hierarchy of taxonomic ranks. For example, the image in
the second row of the table in Fig. 4 belongs to the class minutissi-
mum. This image also belongs to the classes Olivaceum and Gompho-
nema. The testing set of images contains only the set of descriptors
and has no a priori annotations.

3.3.2. PCTs for hierarchical-multi label classification
In the PCT framework (Blockeel et al., 1998), a tree is viewed as a

hierarchy of clusters: the top-node corresponds to one cluster con-
taining all data, which is recursively partitioned into smaller clusters
while moving down the tree. Note that the hierarchical structure of
the PCT does not necessarily reflect the hierarchical structure of the
annotations (Fig. 4). PCTs are constructed with a standard “top-
down induction of decision trees” (TDIDT) algorithm. The heuristic
for selecting the tests is the reduction in variance caused by partition-
ing the instances. Maximizing the variance reduction maximizes clus-
ter homogeneity and improves predictive performance. A leaf of a PCT
predicts the prototype of the set of examples belonging to it. A de-
tailed description of the PCT framework can be found in (Blockeel
et al., 1998). The PCT framework is implemented in the CLUS system,
which is available at http://sourceforge.net/projects/clus/.

To apply PCTs to the task of HMC, the variance of a set of ex-
amples (S) is defined as the average squared distance between
each example's label vi and the mean label Pv of the set (Var Sð Þ ¼
∑i d vi;

Pvð Þ2=jSj). Considering that an error at the upper levels of
the hierarchy costs more than an error at the lower levels, a weighted

Euclidean distance is used: d v1; v2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i w cið Þ v1;i−v2;i

� �2q
, where

vk,i is the ith component of the class vector vk of an instance xk, and
the class weights w(ci). The class weights decrease with the depth
of the class in the hierarchy, w(ci)=w0 ⋅w(cj), where cj is the parent
of ci.

Each leaf in the tree stores the mean P
v of the vectors of the exam-

ples that are sorted in that leaf. Each component of Pv is the propor-
tion of examples P

vi in the leaf that belong to class ci. An example

Eunotia

exigua bilunaris

bilunaris mucophila

Gomphonema

olivaceum

olivaceum minutissimum

taxonomy

olivaceum

minutissimum

exigua

Fourier coef ficients

Fig. 4. An example task of HMC in diatom image classification. The table (on the left-hand side) contains a set of images with their visual descriptors and annotations. The anno-
tations are part of the taxonomic rank with hierarchical structure (of which a small part is shown on right hand side).
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arriving in the leaf can be predicted to belong to class ci if
Pvi is above

some threshold ti. The threshold can be chosen by a domain expert.
For a detailed description of PCTs for HMC, we refer the reader to
Vens et al. (2008). Next, we explain how PCTs are used in the context
of an ensemble classifier, in order to further improve the performance
of PCTs.

3.3.3. Ensemble methods
An ensemble classifier is a set of (base) classifiers. A new example

is classified by the ensemble by combining the predictions of the
member classifiers. The predictions can be combined by taking the av-
erage (for regression tasks), the majority vote (for classification tasks)
(Breiman, 1996; Breiman, 2001), or more complex combinations.

We use PCTs for HMC as base classifiers. Average is applied to
combine the predictions of the different trees: the leaf's prototype is
the proportion of examples of different classes that belong to it. Just
like for the base classifiers, a threshold should be specified to make
a prediction. However, each image from the database contains a sin-
gle diatom. Thus, we select as prototype the species with the highest
proportion of examples averaged across all base classifiers.

We consider two ensemble learning techniques that have primar-
ily been used in the context of decision trees: bagging and random
forests. It was previously shown that in the domain of functional ge-
nomics (Schietgat et al., 2010) and annotation ofmedical X-ray im-
ages (Dimitrovski et al., 2011), both random forests and bagging of
PCTs, outperform a single PCT.

Breiman (1996) constructs the different classifiers by making
bootstrap replicates of the training set and using each of these repli-
cates to construct one classifier. Each bootstrap sample is obtained
by randomly sampling training instances, with replacement, from
the original training set, until a number of instances are obtained
equal to the size of the training set. Bagging is applicable to any
type of learning algorithm.

A random forest (Breiman, 2001) is an ensemble of trees, obtained
both by bootstrap sampling, and by randomly changing the feature set
during learning. More precisely, at each node in the decision tree, a ran-
domsubset of the input attributes is taken, and the best feature is selected
from this subset (instead of the set of all attributes). The number of attri-
butes that are retained is given by a function f of the total number of
input attributes x (e.g., f(x)=x, f(x)=

ffiffiffi
x

p
, f(x)=⌊log2x⌋+1, …). By set-

ting f(x)=x, we obtain the bagging procedure.

4. Experimental design

In this section, we present the experimental setup used to evalu-
ate the proposed system and compare it to other state-of-the-art ap-
proaches for image annotation. First, we state the experimental
questions that we investigate in this study. Next, we present the data-
bases of images that we use and the design of the experiments. We
then specify the parameter instantiations for the algorithms and de-
scribe the evaluation measures used to assess the predictive perfor-
mance of the classifiers.

4.1. Experimental questions

The goal of this study is to answer the following questions:

1. Does the use of the hierarchy (in ensembles of PCTs) improve the
predictive performance over flat classification (SVMs) for the task
of diatom image annotation?

2. Is the proposed system with ensembles of PCTs for HMC scalable
and efficient?

For the first question, we compare the performance of the ensem-
ble classifiers (bagging and random forests) of PCTs for HMC with
SVMs for flat classification—the most widely used classifiers for

image annotation. Since the most elaborate work so far on the prob-
lem of diatom identification is presented by Du Buf and Bayer (du
Buf and Bayer, 2002), we compare our results to the ones presented
there.

Considering the second question, we compare the execution times
of the different classifiers to assess the efficiency and scalability of the
system.Wemeasure the time needed to train the classifiers (for SVMs
this includes also the time needed to optimize the parameters), and
the time needed to obtain annotation (taxonomic rank) of new and
unseen images.

4.2. Diatom image database

The presented system for hierarchical multi-label classification of
diatom images was evaluated on the ADIAC diatom image database
(ADIAC, 2011). In our experiments, we used a subset of 1098 micro-
scopic images that are classified using the taxonomic rank of the dia-
toms. The diatoms from the images belong to 55 different taxa. For
each taxon, there are at least 10 images available, up to a maximum
of 29 images (the number of images per diatom taxa is shown in
Table 4). The diatoms in this set vary in shape but also in ornamenta-
tion (three examples are shown in Fig. 1, and the first row in Fig. 3).

An extensive analysis of this database was performed in (du Buf
and Bayer, 2002), where two other versions of this dataset were
used. The first one consists of 38 taxa, for which at least 20 images
per taxa are available (837 images in total). The second one consists
of 48 taxa, for which at least 15 images per taxa are available (1019
images in total). For comparability, we conduct experiments on the
complete database as well as on the two additional variants of the
database.

4.3. Experimental setup

We evaluate the proposed system along three different evaluation
measures: overall recognition rate, precision and recall. The overall rec-
ognition rate is the fraction of the diatom images where the complete
taxonomic rank was predicted correctly. The precision and recall were
measured for each part of the taxonomic rank (for genus, species, vari-
ety and form). Precision measures the proportion of diatom images be-
longing to a given genus (or other part of the taxonomic rank) thatwere
correctly labeled by the classifier (Precision ¼ TruePositives

TruePositivesþFalsePositives). Re-

call, on the other hand, measures the proportion of diatom images la-
beled by the classifier with a given genus (or other part of the
taxonomic rank) that truly belong to the given genus ( Recall ¼

TruePositives
TruePositivesþFalseNegatives). Precision can be seen as a measure of exactness,

while recall as a measure of completeness. These three evaluationmea-
sures are widely used by the image annotation community. We esti-
mate the predictive performance of the classifiers on unseen cases, for
each of the three measures, by using 10-fold cross validation.

For training the SVMs, we used a custom developed application.
This application uses the Lib SVM library (Chang and Lin, 2001). We
apply the One-against-All (OvA) approach to solve the partial binary
classification problems. Each of the SVMs was trained with a Gaussian
kernel. We optimize the values of the kernel parameter σ and cost pa-
rameter C of the SVMs by using an automated parameter search
procedure.

The algorithm for learning PCTs requires as input the weight of the
depth in the hierarchy (the weight used in the Euclidean distance).
We set w0 to 0.75 (as recommended in (Vens et al., 2008)) thus pe-
nalizing the algorithm more if it makes an error in the upper levels
of the hierarchy than if it makes an error in the lower levels of the hi-
erarchy. We constructed ensembles of 100 un-pruned trees (PCTs)
(Bauer and Kohavi, 1999; Kocev et al., 2007). The size of the feature
subset that is retained at each node, when training a random forest,
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was set to 10% of the number of descriptive attributes. Remember
that the output of the classifier is a probability that a given example
is annotated with a given label. If the probability is higher than a
given threshold (obtained during the training of the classifier), then
the example is annotated with the given label.

5. Results and discussion

In this section, we present the results from the experimental eval-
uation of the proposed system for automatic diatom identification.

We first compare the performance of the ensembles of PCTs for
HMC and the SVMs. The performance is assessed in terms of predic-
tive power through the overall recognition rate (Table 1) and in
terms of efficiency through the training (Table 2) and testing times.
Next, we compare the aforementioned approaches to the results pre-
sented in an extensive study (du Buf and Bayer, 2002) concerning the
ADIAC diatom database. We then focus the analysis on the precision
and recall values for each diatom species obtained with random for-
ests of PCTs for HMC. Finally, we present a web-based interface that
uses the results of the annotation system.

5.1. Performance of the annotation system

Table 1 summarizes the performance of the three machine learn-
ing algorithms (SVMs, random forests and bagging of PCTs for HMC)
in terms of the overall recognition rate. The predictive performance
is compared on the three variants of the image database. Overall, ran-
dom forests of PCTs for HMC perform best, followed by bagging of
PCTs for HMC and SVMs. The random forests of PCTs for HMC have
overall recognition rates of 96.17%, 97.15% and 97.97%, respectively,
for the three variants of the image database. We can thus note that
the random forest method is better than bagging and SVMs over the
three variants of the database and the three types of descriptors.

We further analyze the results for the individual feature extraction
algorithms. The SIFT histograms have better predictive performance
than the Fourier descriptors over all three different machine learning
algorithms and all three databases. The differences are small for bag-
ging and more pronounced for random forests and SVMs. Next, the
results show that combining the two feature sets improves the pre-
dictive performance of the machine learning algorithms. This comes
as a result of the better representation of the visual content in the im-
ages and the orthogonal information offered to the classifiers. This
implies that no single set of features allows to discriminate complete-
ly between the different taxa. Two types of descriptors are needed to
successfully annotate diatom images: contour and texture descrip-
tors. The contour descriptors contain information concerning the
properties of the valve outline, while the texture descriptors concern
the ornamentation of the valve face. To sum up, the best annotation
results are obtained by training random forests of PCTs for HMC
using the combination of the two feature sets.

We also assess the efficiency of the algorithms by measuring the
time needed to learn the classifier (Table 2) and the time needed to
produce a taxonomic rank for a new and unseen image. Considering
the time needed to learn the classifier, random forests are the fastest

Table 1
Predictive performance of the feature extraction algorithms and their combination
evaluated using overall recognition rate (boldface indicates the best performance).

Classifier Descriptors #
features

Overall recognition rate

55 diatom
taxa

48 diaton
taxa

38 diatom
taxa

Bagging Fourier descriptors 30 87.61 88.42 89.00
SIFT histograms 200 87.89 88.91 90.92
Fourier desc. +
hist.

230 95.45 96.27 97.49

Random
forests

Fourier descriptors 30 87.61 88.52 89.25
SIFT histograms 200 89.44 90.87 91.64
Fourier desc. +
SIFT hist.

230 96.17 97.15 97.97

SVM Fourier descriptors 30 83.97 86.75 87.93
SIFT histograms 200 85.25 88.32 89.96
Fourier desc. +
IFT hist.

230 92.35 94.80 96.54

Table 2
Time needed to construct the classifier.

Classifier Descriptors #
features

Total training time [sec]

55 diatom
taxa

48 diatom
taxa

38 diatom
taxa

Bagging Fourier descriptors 30 79.900 67.427 42.272
SIFT histograms 200 633.896 513.962 284.269
SIFT desc. +SIFT hist. 230 701.230 589.346 340.123

Random
forests

Fourier descriptors 30 12.316 9.680 6.448
SIFT histograms 200 60.730 49.037 30.927
SIFT desc. +SIFT hist. 230 74.890 53.340 37.510

SVM Fourier descriptors 30 20.404 12.920 8.309
SIFT histograms 200 114.267 86.133 55.353
SIFT desc. +SIFT hist. 230 140.900 98.078 65.780

Table 3
Comparison of the performance of the random forests of PCTs for HMC (given in italic typeface) to the performance of the approaches from Du Buf and Meyer (du Buf and Bayer,
2002). For each approach, we present the number of images, number of different taxa, used feature extraction techniques and classifiers, the approach to evaluating the perfor-
mance, and the reported overall recognition rate.

Data Descriptors Classifier Evaluation Recognition
rate [%]

# images # taxa

1098 55 Fourier; SIFT Random forest of predictive clustering trees 10-fold cross-validation 96.17
1019 48 Fourier; SIFT Random forest of predictive clustering trees 10-fold cross-validation 97.15
1009 48 Contour profiling; Legendre polynomials Decision trees; Neural networks;

syntactical classifier
Random separation (50/50) to train
and test set

82.00

808 38 Geometric; shape; Fourier; image moments;
ornamentation and morphological

Bagging of decision trees Leave One Out 94.90

837 38 Fourier; SIFT Random forest of predictive clustering trees 10-fold cross-validation 97.97
781 37 Contour; segment; global Nearest-mean classifier Set swaping (complex pseudo

cross-validation)
82.90

781 37 Gabor; Legendre polynomials; ornamentation Decision trees; Bayesian classifier Random separation (50/50) to train
and test set

88.00

781 37 Contour; ornamentation Bagging of decision trees 10 times random separation (75/25)
train and test

89.60

781 37 Gabor; Legendre polynomials; ornamentation;
contour; global; geometric; shape; Fourier;
image moments; morphological

Bagging of decision trees 10 times random separation (75/25)
train and test

96.90
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Table 4
The recognition rate per taxa obtained with the combined feature sets and the approach of learning random forests of PCTs for HMC. The N/A value for the precision and recall is
used for the species and genera that were not present in the respective database.

Taxon #images 55 diatom taxa 48 diatom taxa 38 diatom taxa

Precision Recall Precision Recall Precision Recall

Achnanthes 22 0.79 0.92 N/A N/A N/A N/A
Achnanthes/minutissima 10 0.83 0.71 N/A N/A N/A N/A
Achnanthes/oblongella 12 0.67 1 N/A N/A N/A N/A
Caloneis 18 1 1 1 1 N/A N/A
Caloneis/amphisbaena 18 1 1 1 1 N/A N/A
Cocconeis 62 1 1 1 1 1 1
Cocconeis/placentula 19 1 1 1 1 N/A N/A
Cocconeis/neodiminuta 20 1 1 1 1 1 1
Cocconeis/stauroneiformis 23 1 1 1 1 1 1
Cymbella 67 0.97 1 0.97 1 0.99 1
Cymbella/helvetica 26 1 1 1 1 1 1
Cymbella/hybrida 20 1 1 1 1 1 1
Cymbella/subequalis 21 0.9 1 0.89 1 0.94 1
Diatoma 46 1 1 1 1 1 1
Denticula 22 1 1 1 1 1 1
Denticula/tenuis 22 1 1 1 1 1 1
Diatoma/mesodon 26 1 1 1 1 1 1
Diatoma/moniliformis 20 1 1 1 1 1 1
Encyonema 35 1 1 1 1 1 1
Encyonema/neogracile 10 1 1 N/A N/A N/A N/A
Encyonema/silesiacum 25 1 1 1 1 1 1
Epithemia 19 1 1 1 1 N/A N/A
Epithemia/sorex 19 1 1 1 1 N/A N/A
Eunotia 75 1 0.99 0.98 1 1 0.98
Eunotia/bilunaris 12 0.8 1 N/A N/A N/A N/A
Eunotia/denticulata 22 1 1 1 1 1 1
Eunotia/incisa 20 1 1 0.95 0.95 1 1
Eunotia/tenella 21 1 0.88 0.96 1 1 0.96
Fallacia 43 1 1 1 1 1 1
Fallacia/forcipata 26 1 1 1 1 1 1
Fallacia/sp.5 17 1 1 1 1 N/A N/A
Fragilariforma 20 1 1 1 1 1 1
Fragilariforma/bicapitata 20 1 1 1 1 1 1
Gomphonema 64 1 0.95 0.98 0.97 0.99 0.99
Gomphonema/augur 20 0.91 0.88 1 0.95 0.95 0.95
Gomphonema/minutum 24 1 1 1 1 1 1
Gomphonema/sp.1 20 0.94 0.84 0.95 0.95 1 1
Gyrosigma 20 1 1 1 1 1 1
Gyrosigma/acuminatum 20 1 1 1 1 1 1
Meridion 20 1 1 1 1 1 1
Meridion/circulare 20 1 1 1 1 1 1
Navicula 210 0.96 0.99 0.95 0.99 0.97 0.99
Navicula/capitata 20 1 0.86 0.95 0.86 1 0.9
Navicula/constans 22 1 1 1 1 1 1
Navicula/gregaria 11 0.88 0.78 N/A N/A N/A N/A
Navicula/lanceolata 27 1 1 1 1 1 0.97
Navicula/menisculus 18 1 1 1 1 N/A N/A
Navicula/radiosa 21 1 1 1 1 1 1
Navicula/reinhardtii 29 1 1 1 1 1 1
Navicula/rhynchocephala 19 1 1 1 1 N/A N/A
Navicula/viridula 19 1 1 1 1 N/A N/A
Nitzschia 87 1 0.95 1 0.95 1 0.99
Nitzschia/dissipata 20 1 0.9 1 0.83 1 0.95
Nitzschia/hantzschiana 20 0.56 0.83 0.68 0.93 0.74 0.78
Nitzschia/sinuata 20 1 0.89 1 1 1 1
Nitzschia/sp.2 27 0.93 0.79 0.96 0.79 0.86 0.83
Opephora 20 0.84 0.89 0.95 0.95 1 1
Opephora/olsenii 20 0.84 0.89 0.95 0.95 1 1
Parlibellus 20 1 0.95 1 0.96 1 1
Parlibellus/delognei 20 1 0.95 1 0.96 1 1
Petroneis 20 1 1 1 1 1 1
Petroneis/humerosa 20 1 1 1 1 1 1
Pinnularia 45 0.98 1 1 1 1 1
Pinnularia/kuetzingii 21 1 1 1 1 1 1
Pinnularia/silvatica 10 0.78 1 N/A N/A N/A N/A
Pinnularia/subcapitata 14 0.92 0.86 N/A N/A N/A N/A
Sellaphora 18 1 1 1 1 N/A N/A
Sellaphora/bacillum 18 1 1 1 1 N/A N/A
Stauroneis 19 0.86 0.9 0.94 0.8 N/A N/A
Stauroneis/smithii 19 0.86 0.9 0.94 0.8 N/A N/A
Staurosirella 16 0.94 0.88 0.82 0.93 N/A N/A
Staurosirella/pinnata 16 0.94 0.88 0.82 0.93 N/A N/A
Surirella 26 1 0.91 1 0.88 1 0.93
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method: they are ~8.84 times faster than bagging and ~1.69 times
faster than the SVMs (including also the optimization of the SVM pa-
rameters). Recall that the random forests are ensembles of PCTs for
HMC predicting the complete hierarchy (a single model), while the
SVMs construct a classifier for each node of the hierarchy separately.
Hence, the increase of the hierarchy significantly increases the train-
ing time of SVMs (additional classifiers should be trained), while the
training time for random forests will increase only slightly. For a de-
tailed analysis of the computational complexity of the ensembles of
PCTs, we refer the reader to Kocev (2011). Considering the time need-
ed to annotate an unseen image, bagging and random forests of PCTs
for HMC are faster than SVMs. Namely, to produce an annotation for
unseen image, random forests and bagging need 1 ms for all datasets
and descriptors, while SVMs need 1 ms for the datasets with Fourier
descriptors, 2 ms for the SIFT descriptors and 3 ms for the combina-
tion. All in all, random forests of PCTs for HMC are more efficient
than bagging of PCTs for HMC and SVMs.

du Buf and Bayer (2002) present a very extensive study on the
problem of diatom identification. The ADIAC diatom image database
was analyzed using a variety of feature extraction techniques (mainly
based on contour and ornamentation) and their combinations, as well
as a variety of machine learning algorithms. The results of this study
together with the best results from the proposed system for diatom
identification are summarized in Table 3. Since all systems used a
similar variant of the database, we can relatively directly compare
the performance of the used machine learning algorithms (i.e., the
classifiers) and the feature extraction techniques (i.e., the descrip-
tors). Note that in the other studies a purified version of the database
was used: some images with bad quality were removed. In our study,
however, we used all the images.

We focus the comparison on the approaches that use an equal
number of diatom taxa. For the 38 taxa database, our approach has
~3% better recognition rate than the best performing previous meth-
od (du Buf and Bayer, 2002). This approach uses several types of de-
scriptors (geometric, shape, Fourier, image moments, ornamentation
and morphological) and bagging of decision trees. This means that
our system uses a subset of the features used by the competing ap-
proach and a similar classifier. The difference is that we use predictive
clustering trees as base classifiers in the ensembles as opposed to

simple decision trees. Considering this, we can conclude that our sys-
tem draws its predictive power from the specific classifier (i.e., pre-
dictive clustering trees), which predicts the whole hierarchy and
exploits the dependencies between the taxa.

Next, we discuss the results for the 48 taxa database. The best
reported recognition rate here is 82%, while our system achieves a
97.15% recognition rate — an absolute improvement of ~15%. The
competing method uses a similar set of descriptors and a custom-
made classifier for the task of diatom identification. As for the smaller
database, we can conclude that the competitive advantage of our sys-
tem is the usage of predictive clustering trees as base classifiers in the
ensembles.

5.2. Annotation results per species

We now focus the discussion of the results on the precision and
recall values (shown in Table 4) for each diatom species obtained
by using random forests of PCTs for HMC. Moreover, we also show
the results for each genus of diatoms present in the database. The re-
sults from Table 4 show that our system achieves the perfect score
(both precision and recall are 1) on 34 species and 14 genera for
the largest database (55 taxa), 33 species and 15 genera for the mid-
dle sized database (48 taxa) and 28 species and 14 genera for the
smallest database (38 taxa).

We further discuss the species for which we achieve poor annota-
tion results. In particular, Fig. 5 depicts images from four species with
bad annotation results. The worst precision of 0.56 is obtained for
Nitzchia hantzschiana. We believe that this is because of the similarity
with the other species from the same genus (see for example the im-
ages for Nitzchia sp.2 shown in Fig. 5) and the fact that the images are
not clean and contain other artifacts than diatoms of the given species
(see Fig. 5). The first claim is also confirmed by the recall values for
the other three species from the Nitzchia genus: images from the spe-
cies Nitzchia sp.2, Nitzchia sinuata and Nitzchia dissipata were incor-
rectly annotated as Nitzchia hantzschiana. Also, the low precision
value for Achnanthes oblongella and the low recall value for Ach-
nanthes minutissima is due to the fact that images from the latter spe-
cies were annotated as images from the former species. The same
holds for Pinnularia silvatica and Pinnularia subcapitata.

Nitzschia/hantzschiana Nitzschia/sp.2

Achnanthes/oblongella Pinnularia/silvatica Pinnularia subcapitata

Fig. 5. Example images that were difficult to annotate correctly by our system.

Table 4 (continued)

Taxon #images 55 diatom taxa 48 diatom taxa 38 diatom taxa

Precision Recall Precision Recall Precision Recall

Surirella/brebissonii 26 1 0.91 1 0.88 1 0.93
Tabellaria 43 1 1 1 1 1 1
Tabellaria/flocculosa 20 1 1 1 1 1 1
Tabellaria/quadriseptata 23 1 1 1 1 1 1
Tabularia 41 1 1 1 1 1 1
Tabularia/investiens 21 1 1 1 1 1 1
Tabularia/sp.1 20 1 1 1 1 1 1
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5.3. Web-based diatom classification/identification interface

The goal of the complete system is to assist a taxonomist in iden-
tifying a wide range of different diatoms. We have developed a web-
based user interface (Fig. 6) to demonstrate the usefulness of the pro-
posed system. The user (a taxonomist) can upload a diatom query
image and submit a request to identify the taxon for the given image.

After the request is submitted to the classification system, auto-
matic image segmentation is performed first. Then, in the feature ex-
traction module, the visual descriptors are generated. At the end, the
classifier returns the full taxon name of the query image including the
probability that the given example is annotated with the returned
taxon name. The user can then click on the taxon name to submit a
query to the system, which will return a collection of reference im-
ages for that taxon. Fig. 6 shows the user-interface of our system
with a selected query diatom image, the returned taxon name, and
some reference images returned for that taxon name.

6. Conclusions

We propose a novel approach to taxonomic identification from
microscopic images. We combine different feature extraction ap-
proaches and hierarchical multi-label classification. We learn ensem-
bles of predictive clustering trees that predict the taxonomic rank of
the diatom in the image by using the features of the image and taking
into account the hierarchical structure of the taxonomy.

We evaluate the proposed approach on the ADIAC diatom image
database. We compare the different feature extraction techniques
and suggest that the combination of contour-based and texture-
based features is most suitable for automatic classification of diatom

images. We directly compare the predictive performance and effi-
ciency of ensembles of PCTs and SVMs. The results show that random
forests of PCTs have better predictive performance and are more effi-
cient than the trained SVMs.

We also contrast our results with earlier results on this dataset,
which used specialized features developed for diatom images. Previ-
ous work also used a smaller portion of this dataset, with fewer spe-
cies, and focused on images of high quality. We show that our
approach outperforms the current state-of-the-art in the field and of-
fers very high predictive performance. Furthermore, we demonstrate
the possible usage of the developed system by taxonomists.

Several directions for further work call for attention. First, we can
consider using other diatom image databases, as quite a few have be-
come available recently. Second, we can consider identifying multiple
species in the same sample at the same time: this would truly exploit
the multi-label aspect of hierarchical multi-label classification. Final-
ly, we can consider using the same approach to address taxon identi-
fication problems for other types of organisms.

To summarize, we propose a system for automatic diatom classifi-
cation that consists of two parts: image processing (feature extraction
from images) and image classification. It offers very high predictive
performance — the best reported performance on the considered
dataset. The proposed approach can be extended with new feature
extraction techniques. It can thus be applied to other similar tasks,
such as the taxonomic classification of other groups of organisms.
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